
component; m, frequency of normal oscillations; X, BZ, spectroscopic constants;V, wave func- 
tion;: Rij, matrix elements; Sij, integral intensity of vibrational transition. 
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METHODS OF CALCULATING MOLECULAR-GAS RADIATION ON THE BASIS 

OF SPECTRAL-COMPOSITION MODELING 

Yu. V. Khodyko, E. I. Vitkin, 
and V. P. Kabashnikov 

UDC 5 35.231.4 

A method is proposed for the calculation of the radiation of Inhomogeneous molecular 
gases at low pressures; the method is based on the s,,mmation of the equivalent 
widths of spectral lines and a quasiexponential model of the absorption band. 

In many technological processes, the working medium is a molecular gas active in the IR 
region of the spectrum. At high temperatures of the medium, radiant energy transfer plays 
an important role as well as the convective mechanism of heat transfer, whereas carbon and 
metal-oxide particles emit and absorb radiation over the whole spectral region; the absorp- 
tion of molecular-gas radiation occurs in vibratlonal--rotational bands, and beyond the limits 
of the bands the gas is practically transparent. 

Each vibrational--rotational band consists of a more or less regular set of individual 
spectral lines whose characteristics can only be determined from a knowledge of the position, 
intensity, and contour shape. The bands with the simplest structure are the absorption bands 
of diatomic molecules, the wave function of which may be written in the first approximation 
as a superpositlon of a rigid rotator and a harmonic oscillator, although no difficulties are 
usually involved in taking account of anharmonlc behavior [i]. The spectra of triatomic mol- 
ecules --both linear (C02) and nonlinear (H20, S02) -- are characterized by considerably great- 
er complexity. At high temperatures, theoretical models of symmetric- or antisymmetric-gyro- 
scope type [i, 2] do not give the required accuracy and empirical data play a large role. 

However, such detailed information on absorption spectra over a broad range of the param- 
eters determining the thermodynamic state of the radiating medium is not only difficult to ob- 
tain but also excessive. At low pressures and temperatures ~10S~ it is necessary to deter- 
mine the two-parameter function kv(pT) -- of the order of 107-10 " --describing the spectrum of 
the gas mixture typical for the combustion products in the range 1-15 ~m, It is practically 
impossible to obtain such a volume of data from experiment, and its use for direct calcula- 
tions involves a huge consumption of machine time. Therefore, in practice, the calculation 
of radiant transfer in a selective medium is based on models of the band approximately des- 
cribing the properties of the real spectrum averaged over a small spectral interval of 10-50 
cm -I. The models most often used are the isolated-llne model, the regular model, and the 
statistical (or Goody) model [2-6]. A certain loss of accuracy is involved, but this is com- 
pensated by the simplicity and ease of review of the results. In consequence of the great 
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success of model representations in describing the absorptive capacity of homogeneous molecu- 
lar gases, experimental results have been analyzed to obtain the band parameters Csee [7-10] 
and elsewhere). The parameters used are the ratio of the mean intensity of lines falling 
within a considered spectral interval to the mean distance between the lines, S/d, and the 
ratio of the mean half-wldth of the lines 7 to d. 

One of the assumptions on which use of the band model is based is that the spectral in- 
terval being considered is surrounded by regions with analogous spectral properties, which 
allows the contribution of the distant margins of lines not falling within the considered in- 
terval Av to be taken into account. However, by rejecting this assumption and taking into 
account sufficiently smooth dependences S/d(v) and 7/d(v) within the limits of an individual 
vibrational-rotational band, model representations have been successfully transferred to the 
calculation of the absorptive capacity of all bands for homogeneous gases [6, 11-13]. 

The importance of the results on the absorptive capacity of homogeneous gases is that 
they form the basis for methods of calculating the radiant transfer in inhomogeneous volumes. 

When there is local thermodynamic equilibrium in the medium, with no scattering and no 
radiation from outside the medium, the formal solution of the equation of spectral-radlatlon 
transfer takes the form 

o R 

Jr(R) =j~' n~(/')~.,,exp [--r ~ kv(x) dx }dF,  
(i) 

and the spectral absorption coefficient is 

kv E o 300 (2) = kvip ~ ci, 
i 

where k ~ is the value of the absorption coefficient at the frequency v of the i-th component 

of the mixture at STP. 

It is expedient to introduce the spectral transmission of the layer (r, R) 

R (3) 
�9 = } �9 

r 

Then Eq. (1) takes the form 

0 

(4) 

To eliminate the above-mentioned difficulties associated with direct integration in Eq. (4), 
this equation is integrated over the small spectral interval Av, within which the Plane& 
function may be regarded as independent of frequency at all values of the temperature real- 
ized in the given volume: 

0 

'v(R)~---~lv(R)dv~-Av~Bv(r)~r ~ ( r , .  R)dr, (5) 

where the mean transmission T is determined as follows: 
V 

-- I ~ xvdv" (6) x v (r, R) Av 
AV 
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Thus, the problem reduces to the calculation of the mean transmission along an inhomo- 
geneous path. 

If the spectral Lines are sufficiently far apart for there to be no pronounced overlap- 
ping, the radiation of the volume will be equal to the sum of the radiation corresponding to 
the individual lines. In the case of collisional broadening of the spectral Lines, the ab- 
sorption coefficient of the llne is 

kv (r) ___ S ( r )  "~(r)  . (.7) 
(v - -  VoP + ~2 (r) 

For the remaining calculations it is necessary to introduce a quantity called the equivalent 
Line width W 

r (r, R) = i { I - -  Tv (r, R)} & .  C8) 

The region of integration in Eq. (8) is taken to be infinite, since the lines are assumed to 
be isolated. Using W, Eq. (5) may be rewritten in the form 

R 

-- i ~ d Iv (R)-= B v (r) ~ Vv" (r, R) dr. 
0 

(9) 

Analytic calculation of the quantity W with the absorption coefficient in Eq. (7) is only 
possible in the limiting cases of "weak" and "strong" lines. The first approximation cor- 
responds to an optically thin volume and the second to the case of large optical thickness, 
so that the fraction of the radiation transferred by the central part of the line in Eq. (7) 
with a width of order y is negligibly small in comparison with the radiation coming from the 
margins of the line. 

The approach based on the representation of the band as a set of nonoverlapplng lines 
has a limited range of applicahillty [6, 14]. Taking overlapping of the lines into account 
must lead to some reduction in absorptive capacity. This effect becomes especially pronounced 
at pressures of the order of atmospheric, and for large absorbing masses. 

Historically, the method first used for the calculation of atmospheric transmission was 
that proposed by Curtis [15] and Godson [16]. The Curtls-Godson method (CGM), having shown 
its effectiveness in problems of atmospheric optics, was extended by the efforts of many in- 
vestigators [17-24] to nonisothermal volumes of molecular gases. The principle of the meth- 
od is to replace transmission along an Inhomogeneous path by transmission through a hypothet- 
ical homogeneous layer. In the limiting cases of strong and weak lines, the real layer and 
the hypothetical equivalent layer accurately coincide, while for parameter values at which 
this approximation does not hold such a substitution leads to errors, of course. However, 
numerous calculations made both by the CGM and by an accurate method, as well as comparisons 
with experiment [20, 25, 26], have shown that the Curtis-Godson approximation is in most cases 
also satisfactory in the intermediate region. 

CGM is most often used in conjunction with the statistical model, which [2, 3] assumes 
the absence of a correlation between the position of a line and its intensity and also some 
distribution law of the line intensities in the frequency region considered, The statistical 
model provides a sufficiently good description of the vlbrational--rotational bands of such 
molecules as H20, S02, and C02 at high temperatures. 

Usually two line-intensity distribution functions are used: 

P (s) -=  6 (s - -  so), ( l o )  

P ( s ) =  s--~ - ' (11) 
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where So is some characteristic value of the llne strength for the given interval. 

In the homogeneous case, the mean transmission in the frequency interval Au containing 
sufficiently many Lorentz lines of the same half-wldth is given by the formula 

-In?~ = ~/(z), (i2) 

where z = (So/d)R/21(y/d) and f(z) takes the form of the Ladenburg-Relche function in the case 
of a 6-1ike distribution law and f(z) = z/~l + (~z/2) in the case of an exponential law, 

Although the assumptions made in deriving Eq. (12) -- that the number of lines is con- 
served and the half-wldth of all the lines is the same--may not be satisfied in real condi- 
tions, an expression of the form in Eq. (12) for the transmission of an inhomogeneous layer 
is found to be very valuable in calculations of the radiation of nonisothermal volumes of 
molecular gases [17, 20, 25, 26]. In [17, 26], the traditional formulation of CGMwas some- 
what modified to take account of the possible appearance of new lines in the considered spec- 
tral interval. The merit of this method is that it is possible to use data on S/d and y/D 
determined experimentally on isothermal radiation. 

The standard procedure for extending results valid for homogeneous layers to the c@se of 
an inhomogeneous path is to use mean values over the optical path --~ = (~/d) and 8 = (y/d)-- 
in the expressions for the mean transmission or the equivalent llnewldth. The rules for the 
introduction of these mean values are as follows: 

R R 

0 0 

R 
1 

0 
(13) 

In [20], an investigation of radiant transfer in a nonisothermal volume of water vapor 
in the 2.7-~m band, which is a combination of three basic bands, this version of CGM was 
called the equivalent-llne method. However, in the glven spectral range, with increase in 
temperature, a large number of so-called "hot" vlbratlonal--rotatlonal bands begins to appear; 
these bands correspond to a vibrational transition from an excited state, There is a rapid 
rise in the intensity of lines that are very weak at normal temperatures, and their contribu- 
tion becomes significant. To take account of these new lines, it was suggested that trans- 
mission should be represented as the product of the transmission for individual vibrational-- 
rotational bands 

_ 3 | | | ( 1 4 )  

j = l  L%=O v,=O vs=O 

where v i § v i + ~lj denotes the transition from the quantum state defined by the triad of 

n,,mhers v,, vz, va to that defined by vl + ~,], v= + ~2j~ v3 + ~sj; for the 2.7-Nm band of 
the H20 molecule, the values of ~ij are glven-by the expression 

6tj  

0 2 0 

1 0 0 
0 0 1 

(15) 

The form of the transmission in Eq. (14) is valid when the individual bands are statis- 
tically independent. It was demonstrated in [i] that this independence prevails for overlap- 
ping bands of different absorbing components of a gas mixture. Comparison of calculations 
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for water vapor based on the assumption in Eq. (14) with experiment have shown that this as- 
sumption is sufficiently good [20]. 

In the nonlsothermal case, the transmission for each vibrational--rotational band is giv- 
en in a form analogous to Eq. (13). This method is called the hot-band model, 

The accuracy of CGM calculations of the absorption of nonlsothermal molecular-gas layers 
has been subjected to thorough experimental and theroetical verification. In [17], experi- 
mentally measured Goody-model flne-structureparameters were used to calculate the two-layer 
transmission of water vapor. At the same time, the transmission was measured experimentally. 
The layer temperatures took the two values 637 and 1273~ and the water vapor pressure was 
varied in the range 50-150 mm Hg. The path length of the beam in each cell could be varied 
from 3 to 60.9 cm. The results for the transmission obtained by experiment and CGM calcula- 
tion agree to a very high accuracy (-2%). Also in [17], experimental results are given for 
the transmission through the flames of three burners whose main absorbing component is COa. 
The flame temperature was regulated by controlled additions of cold carbon dioxide. The 
agreement between theory and experiment was also satisfactory in this ease, 

Numerous results obtained by experiment and CGM calculation for the transmission of in- 
homogeneous isothermal and nonisothermal two-layer regions of water vapor in the 2.7-Nm hand 
were compared in [25, 21, 27]. The analytic expressions for the fine-structure parameters 
used in the calculations are also given. Calculation and experiment agree with an accurac F 
of ~i0% for isothermal and nonisothermal layers. 

In [26], the radiation of water vapor in the 2.7-Nm region with a known temperature dis- 
tribution modeled by several isothermal cells was measured. The temperature was varied in 
the range 900-1200~ and the pressure in the range 200-500 mm Hg. The results for the radia- 
tion obtained by the equivalent-llne model are found to be in good agreement with the exper- 
imental results. 

In [20], experimental results on the absorption and radiation of the whole of the 2.7-pm 
band of water vapor were compared with the results obtained using the equivalent-line model 
and the hot-band model. The gas was in a vertical cuvette of length 48 cm; the temperature 
difference reached 600aK; the pressure was atmospheric. It was shown that the equivalent- 
line model gives rather higher results than the hot-band model, and the agreement with ex- 
periment is not so good. (The mean error is -15%.) But, on the whole, the results of the 
comparison must be regarded as good over the whole of the range investigated experimentally, 

In [28] it was pointed out that one of the main sources of error in CGM is the inaccur, 
ate approximation of the spatial derivative of the mean transmission, and it was suggested 
that mean values should only be introduced in the expression for the derivative of the equiv- 
alent linewidth. This approach was developed in [29, 30]. In this method there appears a 
two-parameter function depending on the mean optical depth and the ratio of the local value 
of the parameter ~ to the mean value over the path. At the cost of some complication of the 
calculation procedure, it is possible to eliminate the appearance of nonphysical regions of 
transmission increase with increase in optical depth, as observed in CGM. The difficulty 
which arises in this method is that it is necessary to determine the distribution function 
of line strengths depending both on local values and on mean values over the path; this dif- 
ficulty is overcome by ass~ng that it is possible to factorize this function and that the 
line strength of each llne within the interval Av is proportional to its mean value. It fol- 
lows from these assumptions that all the lines considered have the same temperature depend- 
ence. This means that "hot" lines are relatively poorly taken into account in this method. 
As a result, the mean derivative of the equivalent llnewldth takes the form 

! dW c(r)p(r)k(r)y(z, o), (16) 
d dr 

w h e r e  t h e  t w o - p a r a m e t e r  f = c t i o n  o) i s  g i v e n  i n  t h e  form o f  a d e f i n i t e  i n t e g r a l  d e p e n d -  
i n g  on the optical depth z and o y w,Y- In [29] expressions are given for y(z, o) in the 
case of Lorentz and Doppler contours, and the analytic properties of these functions are an- 
alyzed. 

There are definite objections to the simple extension of the above method for the cal- 
culation of the radiation of inhomogeneous gas volumes to the case of low pressures. Prim- 
arily, this is because all these methods use experimental data on homogeneous gases either 
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directly or by determining certain parameters appearing in the theory from empirical data, 
At present, it is very difficult to obtain the required experimental information at low temp- 
eratures, when the spectral-line contour is of composite or Doppler form. Systematic numer- 
ical calculations of layer transmission at low pressure have been made only for CO and CO= 
and not for water vapor. The method which has been developed is based on the approximate 
methods of describing the absorptive capacity of homogeneous layers at low pressure proposed 
in [31, 32], while the idea of the same approach was formulated in [19]. 

Detailed numerical calculations have shown that, with an accuracy of no worse than 10%, 
the absorptive capacity of a layer may be uniquely described if the sum of the equivalent 
linewidths within the spectral range &~ considered is known: 

Here the frequency is measured from the center of each llne. The mean absorption over A~ of 
the layer is well described by a simple formula following from the statistical model 

A v =  l - - e x p ( - - u 0 .  (18) 

I n  t h e  w o r s t  c a s e s  (A v " 0 . 6 - 0 . 8 ) ,  t h e  e r r o r  o f  t h e  a p p r o x i m a t i o n  i n  Eq.  (18)  r e a c h e s  -30%. 
It arises because the effects of line overlapping are not taken sufficiently accurately into 
account. It should be expected that this error would decrease with decrease in pressure, as 
a result of the fall in the role of the remote margins of the spectral lines. 

The next approximation is to represent a spectral line with a composite contour as a 
superposition of two effective lines with a purely Lorentz and a purely Doppler contour, when 

? L ) 2  & - _ s  , (19) 

(20) 

7,. ~ 0"5(?L --  ]/-V 2a ..'-4, In �9 ~B)" (21)  

(The well-known relations of [2, 25] may be used to describe the dependence of the half- 
widths of the Lorentz YL and Doppler YD lines on temperature, pressure, and the composition 
of the mixture.) 

By means of this approximation, which is no worse than the accuracy of the method, the 
problem may be reduced, for arbitrary pressure p, to separate calculations of the layer 
transmission for the case of Lorentz and Doppler mechanisms of line broadening: 

uv = u . v  UDv, (22)  

" 2 (23) 
i - - ~  0 

Here 

j -L | | 1 e_(V, Vv )~ or D, q~L--- , ~90---- --= 
1 -;- (viy~,) z I 

% (,'L~ V,.) , % = (VD/~'O (1 - -  "?L ;'~,')" 

If a method of determining the line strength is available, the above approximation al- 
lows the mean absorption of the layer to be calculated using modern computers. For diatomic 
molecules, the line strengths may be calculated without great difficulty at any reasonable 
temperature, and for carbon dioxide and water vapor with sufficient accuracy at temperatures 
up to T ~ 1500~ However, it is necessary to develop simple models allowing the calculation 
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to proceed without unnecessarily cumbersome computations. Of the very many models investigated 
in the literature, two of the simplest and most often used are as follows: 

i) the mean-line model, which assumes that in the interval &~ there are n lines of equal 
intensity and line strength S(T); 

2) the quasiexponential model, which assumes that in the given spectral interval there 
are n series of lines, whose intensity is distributed according to an exponential law: S m = ~. 

Se-~m, where m is the number of the line series, and the parameter • characterizes the width 
of the intensity distribution of the lines, i.e., determines the number of sufficiently 
strong lines in the series. As • ~ ~, model 2 transforms to model i, since the series degen- 
erate to a single line. As x + 0, model 2 transforms in the limit to a weak line. Thus, the 
parameter ~may be used as a characteristic of the role of "hot" Lines in considering inhomo- 
geneous volumes. 

In place of Eq. (17), models i and 2 have, respectively, the following expressions 

oD �9 

u , =  '  24, 

1z t' u 2 = -  dm dv l - - e x p  - -  S •  . 
Av . 

(25)  

To determine the parameters of models i and 2, consider a homogeneous layer of gas with Lo- 
rentz-broadened spectral lines. In this case, it follows from Eqs. (24) and (25) that 

Av ~, a 7 1 ' 

uZ n Sr ( Sxw I 

(26) 

(27) 

x and ~ are defined as follows where the functions ~L 

( D [ ( z ) = - ~ -  (1.i-xZ) z exp 1- -x  z ' 
0 

( 1 - : x  2) / l - - e x p  ~ IT-~z 
o 

(28)  

(29) 

These single-parameter functions, representing the growth curves for a characteristic line 
with a Lorentz profile, are easily tabulated. In addition, they may be represented by a suf- 
ficiently good (with an error no worse than 10%) analytic approximation 

~ ) - - I /2  
(z) = I --F -~- z , (3o) 

( ~ )-'" 
(Dl(z) = 1 + - i 6  z , (31)  

which allows the relationship between the parameters of models i and 2 and the experimentally 
measured quantities (S/d) e and d e to be established: 

d~ ' \d:~ 
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n S~' = 
Av ] 

Note chat for a quasiexponential model 
determination of these parameters must 
ture dependence of (S/d) e and d e- 

For a purely Doppler line contour, 

d .e 4 n = de. 

containing three parameters (S, ~, and n), the unique 
involve additional considerations, e.g., the tempera- 

analogous calculations give the following result: 

Av ' (32) 

, , ) 

where 

4 i x2 -x, (3/+) q)~---- V_---- ~ x2exp(- - ze )dx ,  

0 

@~= 4 i x~ [1 - -  exp (-- ze-X~')] dx. (35) 
z V ~  ., 

0 

* and r corresponding to equivalent growth curves, are approximated with 5% The functions CD 

accuracy in the Doppler case by the expressions 

r  (z)= 
[1 ,-5 ln(1 -}-- 1.49z)] l,'-~ 

1 -;- 0,9085 z 

[t -!- In (1 -'- 0.7988 z)l a,2 
1 -5 1.35/z 

(36) 

(37) 

As is evident from Eqs. (30) and (31), the different models lead to practically the same ex- 
pressions for the layer transmission in the case of Lorentz broadening of the lines [25]. 
This means that it is impossible to make a decisive choice of model on the basis of experi- 
mental data on the absorption of homogeneous layers at high pressure. However, in the case 
of Doppler broadening at large absorbing masses, the different models lead to qualitatively 
different results. It may be shown by comparison with direct numerical calculations that 
the quaslexponentlal model, effectively taking into account the presence of weak lines, al- 
ways leads to the best results. Therefore, in investigating the transmission of inhomogene- 
ous gases, attention will be restricted to the quaslexponential model. 

The expression for the sum of the equivalent linewldths appearing in A9 takes the form 
(see Eq. (25)) 

i i r uj=n dm 
~v ., 

0 --~ 0 

(38) 

In the case of Lorentz lines, choosing the appropriate method of averaging z and y over the 
layer, it is not difficult to pass from Eq. (38) to a formula of Curtls--Godson type. However, 
for the Doppler case, this is not possible without cumbersome calculations. Therefore, in- 
tegrating by parts with respect to the frequency in Eq. (38) and introducing the variables 
y = ~/y and t =~m, the following expression is obtained 

; i ;  I I2 );11 2n Se~dr dt y2dye - t  &P~(Y) e x p  - -  S'• e - ' ' r  u i =  :_%--t . Oy x q)~ (_~,_ y _ ! - d r '  . (39) 
0 0 0 0 
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Fig. i. Regions of the parameters z h and z c in which the rel- 
ative error of Eq. (40) is more than 30% (light shading) and 
50% (heavier shading): I) a = Th/T c = 3; II) ~ = Th/T c = 9. 

To simplify the calculations, set 
Eq. (39) takes a very simple form: 

• = • and y' a y in the exponent of the integrand. Then 

f 

uj -- Av 
o o 

Calculations by Eq. (38) are comparable in bulk with CGM calculations. 

The accuracy of the approximation in Eq. (40) was analyzed using a numerical calculation 
for a two-layer region according to Eq. (38). It was assumed that • - T -t (this dependence 
is characteristic of most spectral intervals and most molecular gases). In this case, Uj de- 
pends on three parameters: the temperature ratio of the two layers a = Th/Tc, and the optical 
depths at the center of the effective llne z h and z c. In Fig. I, the regions of the parame- 
ters z h and z c in which the relative error of the approximation in Eq. (40) is more than 30% 

(light shading) and 50% (heavier shading) in the case of Doppler lines is shown. For Lorentz 
broadening with a .< i0, the error of Eq. (40) when z < 105 was no more than 30%. Thus, even 
for sufficiently strong nonlsothermal behavior, the applicability of Eq. (40) is sufficiently 
broad, and covers practically all the cases of practical interest, with the possible excep- 
tion of transmission through the atmosphere. 

In recent attempts to improve methods of calculating the thermal radiation of molecular 
gases (e.g., [29]), the main attention was directed toward improving the accuracy of the spa- 
tial derivative of the equivalent width of the effective llne in the nonisothermal case. 
There has been no discussion of the correct summation of equivalent linewldths over the given 
spectral interval A~. However, it is no less important to take account of all the lines (in- 
cluding the weak lines) arising in transitions between excited levels, especially for radia- 
tion transfer in a strongly inhomogeneous medium. These shortcomings are avoided by a method 
based on the introduction of distribution functions depending only on the spectroscopic char- 
acterlstlcs of the molecule. The line strength corresponding to a transition between an up- 
per level of energy E' and a lower level of energy E" may be written in the form 

Eft 'mmm 273 P M(E' ,  E")exp '~ (41) 
S(E ' ,  E")--  T Q(T) , T ) 

where Q(T) is the statistical sum of the molecule; M(E', E") corresponds to the llne strength 
for a transition from the level E" with a population equal to the Loschmldt number. 

The line-strength distribution function is now replaced by the function f(r m) deter- 
mining the density of the number of spectral lines of strength m within the interval A~ which 
are due to transitions from the low level c. The sum of equivalent widths for the noniso- 
thermal layer may then be written in the form 
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U v= & dmf(~,,tn) W(e, m), 
0 0 

(42) 

where 

'" m ~ 273 P (~,(v, r) exp - dr}dv. W(8, m)=  , {I--- exp - .} T Q(T) (43) 

In deriving this expression, it was assumed that all the lines have the same contour @(~, r). 

The function f(E, m) may in principle be determined theoretically. However, it is more 
reliable to find an approximate expression on the basis of experimental data for the trans- 
mission of homogeneous layers. Substituting Eq. (42) into the formula for the transmission, 
the following integral equation is obtained on the basis of the statistical model: 

lnTe(R, T)= ide idm~,lT(e,m; R, T)f(e, m), 
"r "o' 

(44) 

where Te(R, T) is the experimental value for the layer transmission of geometric dimension 

R at a temperature T. 

Since the main bulk of the experimental data has been obtained for pressures close to 
normal, the llne contour will be assumed to be Lorentzian. In the limiting cases of small 
and large optical depths, the experimental data on transmission are approximated by the ex- 
pressions 

273 I },,,s -- In ~ = k (T) p ~ R, -- In ~ = 2 k(T) p 273 ~(T) R 
, T aCT ) (45) 

respectively. Then from Eq. (44), two integral equations may be obtained: 

k(T) Q(T) = f(e)m(-~) exp - - -~ -  &, 
0 

Q(T)/ ' /2= [f(e)l/m(e ) exp ' e de {k(T) d(T)' "o' [---~) ' 

(46) 

(47) 

where 

1 i 1 i f ( e , m )  mdm; V'm(8) = 1 i : (e ,m)V~mdm.  (48) f (e) = ~v  / (~' m) din; re(e)= f (e) Av f (~) A-------$ . 
0 0 0 

Equation (48) gives integral Laplace transforms for the functions f(E)m(e) and f(e) m~E). 
These functions may be determined by means of the well-known numerical methods of inverse 
Laplace transformation, using experimental data on the dependences k(T) and d(T). If it is 
assumed that 

Vm(e) = Vm(e) , (49) 

then 

i ~ (e, m) ~t (e, m; R, T) dm= f (e) W (e, m (e); R, T), 
0 

(50) 
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Fig. 2. Radiation intensity of a hot layer of water vapor in 
the 2.7-Bm band transmitted through the atmosphere (T h = 1800*K, 
T~-- 300*K). The dashed curve corresponds to CGM calculation. 
lY Yh = Yc = 0.i cm-X; II) Yh = 0.01 cm-', Yc = 0.i cm -I. 

and to calculate the sum in Eq. (42) it is sufficient to know the functions f(g) and re(E). 
By introducing the functions in this way, the satisfaction of the limiting relations in Eqs. 
(46) and (47) is ensured. 

To determine the approximate form of the functions f(e) and m(E) in the present work, 
the method of moments is used. The expressions taken as the trial functions were as follows: 

r (~) = a (v) e x p  [ - -  c (v) (e - -  b (v))], m(e) ---- p (v) exp  [ - -  h (v) (e - -  b (v))] for e ~ b 

and 
(5!) 

/(~)=m(~) =0 for e<b 

Depending on the frequency range, the constants a, c, p, h, and b are determined from the 
approximation of experimental data for k(T) and d(T) [33] by the least-squares method. When 
c = h = O, Eq. (51) yields the line-strength distribution function P(S) ~ S -x cut off in the 
region of large lines, which was used in [30]. The spectral-line density d -x in this case 
depends linearly on the temperature. 

To illustrate the difference between the method here proposed and CGM, Fig. 2 compares 
the results obtained by the two methods for the spectral intensity of the radiation of a hot 
water-vapor layer in the 2.7-~m band transmitted through the atmosphere: the temperature of 
the hot layer is 1800~ and that of the cold layer 300=K; the absorbing masses are 0.24 arm. 
cm and i000 atmecm for the hot and cold layers, respectively; the half-width of the lines in 
both the hot and cold layers is the same in case I, while in case II the half-width is 0.01 
cm -x in the hot layer and 0.i cm -x in the atmosphere. When the half-width of the lines in 
the hot and cold layers is the same, the method gives approximately the same results as CGM 
in the spectral regions corresponding to a maximum of transmitted radiation. The difference 
at the center of the band is insignificant, since the total level of radiation there is small. 
In case If, the transmitted radiation is considerably higher than that found in CGM. This is 
because the atmosphere absorbs only the lines corresponding to transitions between low energy 
levels, and transmits "hot" lines. Therefore, in the method here developed, the transmitted 
radiation is little affected by the half-width of the line in the hot layer, whereas in CGM 
it is reduced. This difference indicates that the method developed in the present work pro- 
vides a better qualitative description of thermal-radiation transfer through a large absorb- 
ing layer of gas. 
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